Beyond Flexibility and Reflection: The Virtual
Virtual Machine Approach

B. Folliot?, I. Piumarta?, L. Seinturier?, C. Baillarguet!, C. Khoury?,
A. Leger?, and F. Ogel!

1 INRIA Rocquencourt, Domaine de Voluceau
78153 Le Chesnay, France
2 Laboratoire d’Informatique Paris VI, Université Pierre et Marie Curie,
4, place Jussieu, 75252 Paris Cedex 05, France
firstname.name@inria.fr,
http://www-sor.inria.fr/projects/vvm

Abstract. With todays wide acceptance of distributed computing, a
rapidly growing number of application domains are emerging, leading to
a growing number of ad-hoc solutions, rigid and poorly interoperable.
Our response to this challenge is a platform for building flexible and
interoperable execution environments (including language and system
aspects) called the Virtual Virtual Machine. This paper presents our ap-
proach, the first two realisations and their applications to active networks
and flexible web caching.

1 Introduction

As distributed computing becomes widely spread, new application domains are
emerging rapidly, introducing more and more heterogeneity into distributed en-
vironments: firstly, because of the rapid hardware evolution (especially with
embedded devices) and secondly because each new application domain comes
with it’s own semantic, constraints and therefore set of dedicated abstractions.

To face those heterogeneity issues, current approaches lead to the design of
complete, new, dedicated programming/execution environment, including lan-
guage and operating systems aspects. As a result, programming and execu-
tion environments, while being well adapted to some given application domains
and/or hardware, remains static, rigid and poorly interoperable..

Our response to this problem is a new, systematic approach for software
adaptation and reconfiguration based on a language and hardware independent
execution platform, called the Virtual Virtual Machine (VVM)I[6].

The VVM provides both a programming and an exection environment, whose
objectives are (i) to allow the adaptation of language and system aspects accord-
ing to a specific application domain, such as smart cards, satellites or clusters; (ii)
to achieve dynamic extensibility, by changing “on the fly” the execution environ-
ment (adding protocols, hardware support, algorithms or even “bug correction”);
(iii) to provide a common language substrate on wich to achieve interoperability
between different languages/application domains.

D. Grigoras et al. (Eds.): IWCC 2001, LNCS 2326, pp. 16-B5] 2002.
© Springer-Verlag Berlin Heidelberg 2002

Beyond Flexibility and Reflection 17

The remainder of this paper starts by presenting the VVM approach and
architecture in Section 2. The first two prototypes and their applications are
described in Section 3 and 4 respectively. Section 5 describes an example of ap-
plication in the domain of flexible web caching. Related works appear in Section
6, followed by conclusions and perspectives in Section 7.

2 Virtual Virtual Machine Project

Most modern distributed applications or environments are composed of com-
plex and heterogeneous interacting components. Dealing with this heterogeneity
raises severe obstacles to interoperability.

The virtual machine approach is a step in the right direction, allowing inter-
systems interoperability, portability and promoting mobility /distribution with
a compact code’s representation and security mechanisms. But there are still
dedicated to specific application domains. Let’s consider SUN’s Java Virtual
Machine: it corresponds to an application domain where there is high amount
of available memory, limited acces to the underlying system and no quality of
service.

The apparition of new application domains, with different characteristics,
implies new virtual machines to match new requirements (for a given architec-
ture, as JavaCard for smartcards or KVM for mobile phones, or some software
needs like real time (RT Java) or fault tolerance). This proliferation of “ad-hoc”
virtual machines breaks the interoperability capabilities of the approach.

If virtual machines are a good step but are still far too rigid, why not to “vir-
tualize” them. Hence, instead of developping a new virtual machine for each new
application domain, a specification is dynamically loaded into the VVM. This
specification describes a virtual machine adapted to this application domain.

The main goal of this architecture, is to bring adaptation, flexibility, dynam-
icity and interoperability to applications, without sacrifying the performances.

Figure [gives a simplified vision of this architecture. The VVM runs on top
of an existing OS or on bare hardware. The lower layer (called u VM) represents
the OS and hardware dependent part. On top of it is the core of the VVM:(i)
the Virtual Processor, wich provide a low-level execution engine based on a
language-neutral internal representation and elementary instructions; (i) an ob-
ject memory (and the associated pure object model), with garbage collection;(iii)
some input methods that allow dynamic loading of execution environment spec-
ification.

Such a specification is called a VMLet. It is a high level description of the
language and/or the system aspects of a programming/execution environment
dedicated to a given application domain. Because of having a single execution
mechanism for all the VMLets, it promotes interoperability (and reuse of code)
between applications but also between application domains (and their respective
environments). This interoperability can range from simple data exchange to
mobile computations. It allows the sharing of physical and/or logical ressources
and permits aggressive optimizations.

18 B. Folliot et al.

&l D]
My appli (type SupervM)

(something to do)
1

e) | |

My SuperVMlet Application 1
loader
(define-instruction ()) ”SuperVM”

(define-object ())
(define-syntax ()) .
(define-primitives ()) |:> ;’hgef OS Services
(define-loader ()) Oader |

<1 (use-0Smodule ())

Execution engine - Virtual processor

Object memory VVM
u-VM

hardware and OS dependant {OS,6}

Fig. 1. The VVM architecture.

Once the VVM has loaded a VMLet, it adapts/extends itself so that it con-
tains the semantic and functionnalities of the described virtual machine. Hence
there’s only one meta-level: the VVM becomes the VM described in the VMLet,
thus the performances should be equivalent to the similar “hand-coded” virtual
machine. Then, applications written for this environment can be loaded and
executed as if they were running on a dedicated VM.

Dynamic extensibility comes from the ability to add and/or redefine “on the
fly” everything in the environment, in response to requirements or execution
conditions change. Interoperability can be achieved by having a single execution
engine, and thus a common language substrate that can be used to exchange
data and code between applications and/or VMLets.

3 The Reflexive Virtual Machine

The first step toward the VVM was the Reflexive Virtual Machine (RVM). Tt is
a scheme-like interactive virtual machine that is able to modify dynamically its
own primitives and instructions sets.

This dynamic flexibility provides the RVM with the ability to adapt/extend
itself at runtime and thus turns itself into a virtual machine dedicated to a given
application domain, without loosing its flexibility.

Beyond Flexibility and Reflection 19

Not only can the language of the virtual machine be extended at run-
time by adding instructions or primitives, but it can also be adapted to some
domain-specific semantics, by adding user-level extension from classes and in-
heritance (which do not exist in traditional lisp-like languages) to semaphores
or lightweight processes.

Although quite limited, the RVM has been used to experiment VMLets pro-
gramming, and especially in the context of active networks. Active networks
represent an emerging application domain that is therefore, as we mentioned,
addressed via lots of differents and dedicated solutions, without any interoper-
ability between.

From the dozens of existing protocols, we quoted two: PLAN [9] and ANTS
[21]. When PLAN rely on packets containing both data and code, ANTS uses a
deployment phase. During this phase, the protocols are sent to the routers with
a protocol id, after what only data and the id of the protocol to be used needs
to be sent. Each of those protocols represents an extreme on the full range of
possible active network protocols.

So we defined two VMLets (one for each protocol), including lan-
guage/operating system aspects and an API. We keep the front-end lisp-like
language of the RVM and reuse the socket’s services of the underlying UNIX
OS (select, send, receive,. ..). Concerning the APIs, we mimic PLAN and ANTS
‘ones. Thus, by loading such a VMLets, the RVM transforms itself to an active
router (that understand PLAN and/or ANTS, depending on what is loaded).

As a first result, each VMLet is two order of magnitude smaller than the
corresponding original implementatio. By simply loading the two VMLets, we
obtain an active router that is able to proceed both PLAN and ANTS ’s packets.

The next logical step is to define a generalisation of the active network ap-
plication domain, called Active Active Networks, that will allow (i) to select the
most appropriate protocol, according to some requirements, at any time; (ii) a
dynamic deployment of any active network protocols, giving us an opportunity
to explore the different possible strategies between PLAN and ANTS.

4 YNVM Is Not a VM

The current prototype, called the YNVM, is a dynamic code generator that
provides both a complete, reflexive language, and an execution environment.
The role of the YNVM, from the VVM project point of view, is to allow the
dynamic generation of domain-specific virtual machines.

To achieve that, the YNVM provides four “basic” services:

Code generation: a fast, platform and language independent dynamic com-
piler producing efficient native code that adheres (by default) to the local
platform’s C AB;

! counted in bytes of source code.

2 Application Binary Interface

20 B. Folliot et al.

Meta-data: are kept from the compilation, thus allowing higher-level software
to reason about its implementation or the environment’s one, and dynami-
cally modify them;

introspection: on dynamically compiled code, the application and the envi-
ronment itself;

Input methods: giving access to the compilation/configuration process at all
levels.

The objective is to maximise the amount of reflective access and intercession,
at the lowest possible software level, while preserving simplicity and efficiency.
The execution model is similar to C, thus providing total compatibility with
native applications and systems libraries. In addition to this C-like execution
model, the use of a dynamic code generator allows performances similar to stat-
ically compiled C' pograms.

Thanks to this compatibility any application can be build with a mix of
C/C++ and YNVM’s code, according to the semantics of each part of the
program.

What’s more is that even if it still uses a scheme-like front-end language, the
introspection’s facilities and the implementation’s reification, allow you to change
language features for ease of development. For example, by simply dynamically
changing the parser, it is possible to switch from a functionnal paradigm to an
imperative and infix C' syntax style, letting the programmer choose, for each
component of its application, the most appropriate paradigm to write it.

5 Flexible Web Caching

To illustrate the advantages of putting the flexibility, reflection and the dynam-
icity at the lowest possible software level (in the execution environment itself),
we have developped a flexible web cache (called C’/NNE‘) on top of the YNVM.

Flexibility in web caches comes from the ability to configure a large number
of parametersﬁ that influence the behaviour of the cache (protocols, cache size,
and so on). What’s more, some of these parameters, such as user behaviour,
change of protocol or the “hot-spots-of-the-week” [17], cannot be determined
before deploying the cache.

However, reconfiguring current web caches involves halting the cache to in-
stall the new policy and then restarting it, therefore providing only “cold” flex-
ibility.

WebCal [13] and CachelL [2] are examples of web caches that bring flexibility
through the use of domain-specific languages (DSLs). Being dedicated to a par-
ticular domain, a DSL offers a powerful and concise medium in wich to express
the constraints associated with the behaviour of the cache. However, in spite
of being well-adapted to the specification of new cache behaviour and even to

3 The Cache with No Name
4 See the configuration file for Squid...

Beyond Flexibility and Reflection 21

formal proofs of its correctness, a DSL-based approach does not support “warm”
reconfiguration.

Other work [1] proposed a dynamic cache architecture, in which new policies
are dynamically loaded in the form of components, using the “strategy” design
pattern [8]. While increasing flexibility, it is still limited: it is only possible to
change those aspects of the caches behavior that were designed to be adaptable
in the original architecture. This is the problem of using rigid programming lan-
guages/environments to build dynamically reconfigurable applications: limited
reification and dynamicity lead to limited reconfigurability.

Because of it’s being build directly over the YNVM, C/NN inherits its high
degree of reflexity, dynamicity and flexibility and so provides “warm” replace-
ment of policies, on-line tuning of the cache and the ability to add arbitrary new
functionality (observation protocols, performance evaluation, protocol tracing,
debugging, and so on) at any time, and to remove them when they are no longer
needed.

In particular, as the reconfiguration strategy is a policy too, an ad-
ministrator could dynamically define new or reconfigure existing adminstra-
tion/reconfiguration rules, performance metrics and associated monitors. Here
are some examples of such reconfigurations:

1. when the request rate becomes high, the cache can start to manage a “black
list” of servers with low response time and stop caching their documents
(direct forward of the requests).

2. if the “byterate” is going down to a threshold, the cache can automatically
switch to another policyt], that saves more bandwidth (even with a worse
hitrate or mean response time).

The VVM approach lets us instantiate an execution environment dedicated
to web caching so that writing a new replacement strategy (from a paper) takes a
tens of minutes (for someone familiar with YNVM) and the results is about a few
lines of code, see figure[Z for an example. Because everything can be changed “on
the fly” in the YNVM, it was possible to mix different paradigms in C/NN’s code
(the functional scheme-like front-end and some statically compiled C), making
code writing even more easy, quick and natural. Figure 2] shows an example
of reconfiguration script, written in an infix style, including a reconfiguration
function (switch-to), a new replacement policy (filter-policy, based on one found
in [3]) and the reconfiguration command.

Solutions to software dynamic reconfiguration usually implie some “meta
level” and degraded performances. Hence our main goal: to bring dynamic flex-
ibility, reflexion and performances together.

Because of the quality of the code generator, the performances of an YNVM'’s
application are almost equivalent to C programs (and even sometimes better
due to very aggressive optimization and partial evaluation techniques). We have
compared C/NN to the widely used Squid cache version 2.3 on the basis of

5 the choice can be based on meta-data associated with strategies and multi-criterion
decision algorithms.

22 B. Folliot et al.

(11 cache reconfiguration function A
defun switch-to(new policy, numto-re-eval uate){
let head = get-worst(repository, numto-re-evaluate);
current-policy = new policy;
whi | e(head) {
http-repository. update(repository, cell.data(head));
head = next-cell (head);
}
b
1" a new repl acenent policy
defun filter-policy(doc) {
if (systemstrncnp(“text", http.mmeType(doc),4))
si ze-cost (doc);
el se
gds- cost (doc) ;
b

/1 reconfiguration command (re-eval uate 20% of the cache)
switch-to(filter-policy,
http-repository.size(repository)/5);

Fig. 2. A complete reconfiguration script.

their average response time (that is the performance criteria the user actually
see): based on different traces collected at INRIA (from 100K to 600K requests).
Squid’s response time is a few more than 1 sec, C/NN’s was about 0.83 sec.
Handling a hit takes about 130 us and about 300 us for a miss. So having
a dynamically reconfigurable web cache doesn’t seem to imply having a less
performant one.

Probably the most important issue is the cost of a reconfiguration. Switching
from a policy to another pre-defined one, takes less than 50 us. Because adding
some new functionality implies compiling new codes, the amount of time needed
to proceed a reconfiguration depends on the complexity of the extension that is
being added, but defining a new replacement strategy takes about 400 us, and
can be compared to handling one request.

6 Related Work

The Virtual Virtual Machine project can be compared to different approaches.

Some work is being done around specialisable virtual machines, that is the
generation of new, dedicated virtual machines for a given application domain and
environment (operating system, hardware,. ..), as for example JavaCard [11] or
PLAN [9]. The main difference with these approach is that (i) it does not provide
the common language substrate and thus results in isolated virtual machines,

Beyond Flexibility and Reflection 23

without any hope of interoperability; (ii) the specialised virtual machines, once
generated, are still static and not flexible.

Flexible operating systems, such as SPIN [18] or Ezokernel [4], and meta
object protocol projects are also comparable to our project, however they focuse
only on system’s aspects and do not provide language flexibility. The security
policy, needed to control the extensibility, although it is still a policy, and there-
fore should be extensible, is a static design choice that can not be changed. We
argue that different application domains will probably have different security
requirements and semantic, hence it is the responsability of (i) the administra-
tor to customize inter- VMLets security rules; (ii) the VMLets to define security
rules for a given application domain.

To address emerging application domains work is being done on embedded
operating systems, as MultOS [14], uClinuz [20] or SUN’s KVM [12]. Each of
those environments, while being well dedicated to emerging computing, are still
rigid, closed and poorly interoperable.

Another research domain our work can be compared to is language interop-
erability. The objective is to support multiple language, and to allow them to
interoperate, in a single execution environment. The Universal Virtual Machine
[10] project from IBM aims at executing both Java, Smalltalk and Visual Basic
applications. Nevertheless, it still only a rigid extension to an existing (Smalltalk)
virtual machine (that understand three language instead of one): while allowing
the support for three different language, it is neither reflexive nor extensible.

Microsoft . Net [15] is another project from this research domain. Microsoft
framework aims at responding to the need of every possible user/application.
Thus, it applies a “one-size-fit-all” approach which is known to (i) poorly face
the evolution of applications requirements and/or semantics; (ii) penalize perfor-
mances; (iii) be closed, and thus to impose artificial constraints to developpers.
At the opposite, we want to give any user/application the ability to adapt the
execution environment to its requirements and/or semantics, which result in a
(i) better match with applications needs; (ii) more evolutive solution, as each
emerging application domains will not implie an update of the framework; (iii)
more performant execution environment, as an application will never suffer from
a “one-size-feet-all” services like in traditionnal operating systems.

7 Conclusions and Perspectives

This paper presented our approach to dynamic flexibility and interoperability,
based on a meta execution environment. The RVM and the YNVM have shown
to be efficient for writting execution environment (few hundreds of line each)
in two different contexts: active networks and flexible web caching. The result-
ing VMLets are small compared to traditionnal implementations. The YNVM
have demonstrated that we can come close to having the best of several worlds:
flexibility, dynamicity, simplicity and performances. It demonstrates that recon-
figurability can be simple, dynamic and have good performances.

24 B. Folliot et al.

With the VVM projects we continue to investigate a systematic approach
for building flexible, adaptable and interoperable execution environments, to
free applications from the artificial limitations on reconfiguration imposed by
programming environments.

The YNVM has been ported on bare hardware (PowerPC) and thus provides
an environment for building dynamically dedicated and flexible operating sys-
tems. This gives applications an opportunity of executing “standalone”, avoiding
the need for a traditionnal operating system and its associated overheads and/or
predefined abstractions.

Concerning active networks, work is being done on a generalisation of existing
protocols, to achieve Active Active Networks. In AAN, the active protocols and
the deployment protocols are dynamically instantiated on the machines.

The Virtual Virtual Machine may look as an ambitious project, but it seems
to be highly relevant to address many current and upcoming topics like set-top-
boxes, active networks, mobile telephony and embedded systems, to name but a
few.

References

1. O. Aubert, A. Beugnard, Towards a Fine-Grained Adaptivity in Web Caches,
in Proceedings of the 4th International Web Caching Workshop, April 1999.
http://www.ircache.net/Cache/Workshop99/Papers/aubert-0.ps.gz

2. J. Fritz Barnes and R. Pandey CacheL: Language Support for Customizable
Caching Policies, in Proceedings of the 4th International Web Caching Workshop,
April 1999.
http://www.ircache.net/Cache/Workshop99/Papers/barnes-final.ps.gz

3. E. Casalicchio and M. Colajanni Scalable Web Cluster with Static and Dynamic
Contents, in Proceedings of IEEE International Conference on Cluster Computing
(CLUSTER 2000), Chemnitz, Germany, December 2000.

4. M.F. Kaashoek, D.R. Engler, J. O’Toole, Exokernel: an operating system archi-
tecture for application-level ressource management Proceedings of the 15th ACM
Symposium on Operating System Principles, Copper Mountain, Colorado, Decem-
ber 1995.

5. B. Folliot, The Virtual Virtual Machine Project, Proccedings of IFIP Sympo-
sium on Computer Architecture and High Performance Computing, Sao Paulo,
Brasil,October 2000.

6. B. Folliot, I. Piumarta and F. Ricardi, A Dynamically Configurable, Multi-
Language Execution Platform SIGOPS European Workshop 1998.

7. B. Folliot, I. Piumarta, L. Seinturier, C. Baillarguet and C. Khoury, Highly Con-
figurable Operating Systems: The VVM Approach, in ECOOP’2000 Workshop on
Object Orientation and Operating Systems, Cannes, France, June 2000.

8. E. Gamma and al. Design Patterns: Elements of Reusable Object-Oriented Soft-
ware, Addison-Wesley, 1994.

9. M. Hicks and al. PLAN: A Packet Language for Active Networks, in Proceedings
of the International Conference on Functional Programming, 1998.

10. IBM plans cross-platform competitor to Java, InfoWorld Electronic, April 1997.

11. http://www.javacard.org

12. http://www.java.sun.com/products/cldc/wp/

http://www.ircache.net/Cache/Workshop99/Papers/aubert-0.ps.gz
http://www.ircache.net/Cache/Workshop99/Papers/barnes-final.ps.gz
http://www.javacard.org
http://www.java.sun.com/products/cldc/wp/

13.

14.
15.
16.
17.

18.

19.
20.
21.

22.

Beyond Flexibility and Reflection 25

G.Muller, L.Porto Barreto, S.Gulwani, A.Trachandani, D.Gupta, D.Sanghi, We-
bCaL: A Domain Specific Language for Web Caching, in 5th International Web
Caching and Content Delivery Workshop, 1999.

http://www.multos.com

http://www.microsoft.com/net/

S. Patarin and M. Makpangou, Pandora: a Flexible Network Monitoring Platform
Proceedings of the USENIX 2000 Annual Technical Conference, San Diego, June
2000.

M. Seltzer, The World Wide Web: Issues and Challenges , Presented at IBM Al-
maden, July 1996.

B. Bershad, S. Savage, P. Pardyack, E. Gun Sirer, D. Becker, M. Fiuczynski, C.
Chambers and S. Eggers, Extensibility, Safety and Performance in the SPIN Op-
erating System Proceedings of the 15th ACM Symposium on Operating System
Principles, Copper Mountain, Colorado, December 1995.
http://www.squid-cache.org/

http://www.uclinux.org/

D.Wetherall, J. Guttag, D. Tennenhouse. ANTS: A Toolkit for Building and Dy-
namically Deploying Network Protocol, in Proceedings of IEEE OPENARCH’98,
San Fransisco, USA, April 1998.

S. Michel, K. Nguyen, A. Rosenstein, L. Zhang, S. Floyd and V. Jacobson, Adaptive
Web Caching: towards a new global caching architecture, Computer Networks and
ISDN Systems, 30(22-23):2169-2177, November 1998.

http://www.multos.com
http://www.microsoft.com/net/
http://www.squid-cache.org/
http://www.uclinux.org/

	Introduction
	Virtual Virtual Machine Project
	The Reflexive Virtual Machine
	YNVM Is Not a VM
	Flexible Web Caching
	Related Work
	Conclusions and Perspectives

