
EE380, Stanford, 2007 – 02 – 14

Building your own dynamic language is fun and easy!
first steps toward reinventing computing

Ian Piumarta

Viewpoints Research Institute

ian@squeakland.org

preamble

talk and slides

• algorithms and structures for offline contemplation

• motivation for experiments

– make to know, not just to have!

• pointers to useful information

• pertinent artefacts from ancient (computing) history

CA101

2

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

vpri.org

20,000 LOC to describe a complete, practical personal computer system

stepping stone to a qualitative reinvention of programming

the system is the curriculum

• ideas and ideals

• comprehensive, clear, high-level, understandable

• practical working system that is its own model

• system to learn about systems

• an exploratorium of itself

3

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

approach

contrast with current computing systems

• artefacts often functional (rather than understandable or good models)

• large, complex, costly, buggy, insecure, segregated and inexpressive

models are most useful if

• powerful enough to capture the phenomena

• small enough to be comprehensible

conventional programming languages?

4

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

conventional programming

Application

System

Hardware

Libraries

Compiler

Syntax
SemanticsSource

Runtime

Language

Environment

malleable (under programmer control)

rigid (imposed from outside)

"black box" (hermetically sealed)

Pragmatics

UDP

5

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

arcane (for the moment) example

incremental syntax and semantics

(typescript of demo at the end of these slides)

6

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

math wins!

algebra

• abstraction of operations and types

– subsumes many concrete kinds of things and relations

• entire system emphasizes similarities, diminishes differences

• enormous contraction of the number of meanings that have to be specified

7

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

LISP 1.5 — self-describing function
evalquote[fn; x] = apply[fn; x; NIL]

apply[fn; x; a] =
[atom[fn] -> [eq[fn; CAR] -> caar[x];

eq[fn; CDR] -> cdar[x];
eq[fn; CONS] -> cons[car[x]; cadr[x]];
eq[fn; ATOM] -> atom[car[x]];
eq[fn; EQ] -> eq[car[x]; cadr[x]];
T -> apply[eval[fn; a]; x; a]];

eq[car[fn]; LAMBDA] -> eval[caddr[fn]; pairlis[cadr[fn]; x; a]];
eq[car[fn]; LABEL] -> apply[caddr[fn]; x;

cons[cons[cadr[fn]; caddr[fn]]; a]]]

eval[e; a] =
[atom[e] -> cdr[assoc[e; a]];

atom[car[e]] -> [eq[car[e], QUOTE] -> cadr[e];
eq[car[e]; COND] -> evcon[cdr[e]; a];
T -> apply[car[e]; evlis[cdr[e]; a];

a]];
T -> apply[car[e]; evlis[cdr[e]; a]; a]]

evcon[c; a] =
[eval[caar[c]; a] -> eval[cadar[c]; a];

T -> evcon[cdr[c]; a]]

evlis[m; a] =
[null[m] -> NIL;

T -> cons[eval[car[m]; a]; evlis[cdr[m]; a]]]

8

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

function is meaning derived from form
evalquote[fn; x] = apply[fn; x; NIL]

apply[fn; x; a] =
[atom[fn] -> [eq[fn; CAR] -> caar[x];

eq[fn; CDR] -> cdar[x];
eq[fn; CONS] -> cons[car[x]; cadr[x]];
eq[fn; ATOM] -> atom[car[x]];
eq[fn; EQ] -> eq[car[x]; cadr[x]];
T -> apply[eval[fn; a]; x; a]];

eq[car[fn]; LAMBDA] -> eval[caddr[fn]; pairlis[cadr[fn]; x; a]];
eq[car[fn]; LABEL] -> apply[caddr[fn]; x;

cons[cons[cadr[fn]; caddr[fn]]; a]]]

eval[e; a] =
[atom[e] -> cdr[assoc[e; a]];

atom[car[e]] -> [eq[car[e], QUOTE] -> cadr[e];
eq[car[e]; COND] -> evcon[cdr[e]; a];
T -> apply[car[e]; evlis[cdr[e]; a];

a]];
T -> apply[car[e]; evlis[cdr[e]; a]; a]]

evcon[c; a] =
[eval[caar[c]; a] -> eval[cadar[c]; a];

T -> evcon[cdr[c]; a]]

evlis[m; a] =
[null[m] -> NIL;

T -> cons[eval[car[m]; a]; evlis[cdr[m]; a]]]

five elementary functions (and one elementary form)

9

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

interdependence of function and form

elementary functions create and manipulate of elements of structure

• structural details are largely irrelevant

• (or at least reduced to simplest essentials)

interaction with (manipulation of) structure requires function

• can we make functional details be largely irrelevant?

• (or at least reduced to simplest essentials)

10

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

form as encapsulated ‘something’: objects

minimal object:

• encapsulates behaviour

• (subsumes state)

M ?

no assumptions about object contents

• decouple implementation from representation

• representation arbitrary

• behaviour replaceable (and shareable)

• implementation of behaviour replaceable (and shareable)

M
?
B

? ?

11

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

self-describing data

behaviour is associated with, and accessed uniquely through, data elements

[...] there is a very important class of properties of elements which has to do
not so much with the physical attributes of the element as with the function
which is to be performed on that element by some procedure

[...] the item stored in the component of the element whose name is
currently in index J would be an actual TRA instruction to transfer control to
the appropriate point in the flow diagram.

Douglas T. Ross
A Generalized Technique for Symbol Manipulation and Numerical Calculation

ACM Conference on Symbol Manipulation, May 20–21, 1960, Philadelphia, PA

12

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

from an oo perspective

objects

• manage complexity

• encapsulate behaviour

• encapsulate (even ‘foreign’) structure

– non-object members

• avoid namespace pollution

• are flexible building blocks for arbitrary data structures

• exhibit dualities with functions, e.g:

apply[fn; args; alist] ⇔ alist.fn[alist; args]
alist= environment ⇔ alist= ‘receiver’

namespace ⇔ method dictionary

13

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

the minimal object

vtable
oop

?
increasing

memory
addresses

send(message, object, ...) =
method := object[-1].lookup(message)
method(object, ...)

14

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

dynamic binding

bind(object, message) =
vtbl.lookup(vtbl, message)

15

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

method cache

bind(object, message) =
vtbl← object[-1] ;
cache[vtbl, message] ? cache[vtbl, message]

: cache[vtbl, message]← vtbl.lookup(vtbl, message)

16

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

immediate types

bind(object, message) =
vtbl← object == 0 ? vtblnil

: object & 1 ? vtblfixint

: object[-1] ;
cache[vtbl, message] ? cache[vtbl, message]

: cache[vtbl, message]← vtbl.lookup(vtbl, message)

17

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

circular semantics

bind(object, message) =
vtbl← object == 0 ? vtblnil

: object & 1 ? vtblfixint

: object[-1] ;
cache[vtbl, message] ? cache[vtbl, message]

: cache[vtbl, message]← vtbl.lookup(vtbl, message)

vtbl.lookup(vtbl, message) =
(bind(vtbl, #lookup))(vtbl, message)

• message send implemented by sending messages

• override⇒ new semantics

18

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

the minimal object

vtable
oop

?
increasing

memory
addresses

send(message, object, ...) =
method := object[-1].lookup(message)
method(object, ...)

vtable protocol

vtable.lookup(aSelector)

vtable.methodAtPut(aSelector, aMethodImplementation)

vtable.intern(aString)

vtable.allocate(objectSize)

19

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

everything is an object

S -> I

lookup: -> <impl>

vtable
vtable

vtable

oop

? ?
lookup: -> <impl>

object’s behaviour

delegate

object

behaviour’s behaviour

20

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

objects are; methods do

consider VM-based language

• represent ‘does’ (computation) with some ‘is’ (CompiledMethod)

• wave magic wand (apply VM to image, class file, ...)

• representation of ‘does’ indirectly moves messages around between the ‘is’

• methods have no dynamic effect without a VM

• the VM is not an object

• the actions of methods cannot be described purely in object terms

– bind, apply, sequence

method objects imply how objects might be animated; the animation itself comes
from ‘outside’

cf., LISP 1.5: structure implies how functions might be interpreted; the
implementation of structure (elementary functions and form) and its sequencing
comes from ‘outside’

21

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

objects are form

O x M -> I

(I = { O’ x M’ }*)

form

22

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

form needs function

O x M -> I

(I = { O’ x M’ }*)

01001011
01100101
11001000

form

function

23

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

form describes function

O x M -> I

(I = { O’ x M’ }*)

01001011
01100101
11001000

form

function

24

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

functions transform form into function

O x M -> I

(I = { O’ x M’ }*)

01001011
01100101
11001000

form

function

25

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

form describes function implements form

O x M -> I

(I = { O’ x M’ }*)

01001011
01100101
11001000

expr -> IR -> gen

form

function

26

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

object-function duality

analogy with physical sciences

• ‘particle’ side (objects representing meaning) needs a good model

– often neglected in functional programming

– the physical substance of interactions

– almost subsumed by the generality of 1st-class functions of lists

• ‘field’ side (messaging and events animating objects) needs a good model

– often neglected in ‘object-oriented’ programming

– the interstitial side of interactions

– almost invisible because the concreteness of objects

objects and functions (messaging system) are duals

• must be kept in balance for the most powerful and compact modeling

complex systems = typical elements + dynamic relationships

• unifies (mathematically) many phenomena previously seen as different cases

27

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

everything is self-describing structure

downwards, sideways

01001011
01100101
11001000

.c

.h
...

objComp

your
DSL/ASL/MSL

& upwards

• lexical, syntactic, semantic, IR analysis as pattern-directed transformation

28

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

syntax and grammar

advanced recursive-descent parsing techniques (Birman, 1970)

• easy to write, read, understand

• more general and powerful than ‘traditional’ table-driver parsers

• just as amenable to analytic techniques

synergy (lexical vs. syntactic vs. semantic; delayed vs. immediate meaning & effect):

• TEX (Donald Knuth, 1981)

• input can reason about itself during its own parsing

the grandfather of dynamic grammars: Meta-II (Val Schorre, 1962)

• self-describing, self-implementing, self-bootstrapping dynamic syntax

29

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

free text to syntactic structure: META-II
.SYNTAX PROGRAM

OUT1 = ’*1’ .OUT(’GN1’)
/ ’*2’ .OUT(’GN2’)
/ ’*’ .OUT(’CI’)
/ .STRING .OUT(’CL ’ *) ;

OUTPUT = (’.OUT’ ’(’ $ OUT1 ’)’
/ ’.LABEL’ .OUT(’LB’) OUT1) .OUT(’OUT’) ;

EX3 = .ID .OUT(’CLL’ *)
/ .STRING .OUT(’TST’ *)
/ ’.ID’ .OUT(’ID’)
/ ’.NUMBER’ .OUT(’NUM’)
/ ’.STRING’ .OUT(’SR’)
/ ’(’ EX1 ’)’
/ ’.EMPTY’ .OUT(’SET’)
/ ’$’ .LABEL *1 EX3 .OUT(’BT ’ *1)

.OUT(’SET’) ;

EX2 = (EX3 .OUT(’BF ’ *1) / OUTPUT)
$ (EX3 .OUT(’BE’) / OUTPUT)
.LABEL *1 ;

EX1 = EX2 $ (’/’ .OUT(’BT ’ *1) EX2) .LABEL *1 ;

ST = .ID .LABEL * ’=’ EX1 ’;’ .OUT(’R’) ;

PROGRAM = ’.SYNTAX’ .ID .OUT(’ADR’ *)
$ ST ’.END’ .OUT(’END’) ;

.END

30

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

alternative approaches: LISP70

Tesler et al, 1973
RULES OF MLISP =

IF <MLISP>:X THEN <MLISP>:Y ELSE <MLISP>:Z
-> (COND (:X :Y) (T :Z)) ,

IF <MLISP>:X THEN <MLISP>:Y
-> (COND (:X :Y) (T NIL)) ,

IF <MLISP>:X
-> <ERROR (MISSING THEN)> ,

IF
-> <ERROR (ILLEGAL EXPRESSION AFTER IF)> ,

:X < :Y
-> (LESSP :X :Y) ,

:VAR
-> :VAR ;

IF A < B THEN C ELSE D

=> (COND ((LESSP A B) C)
(T D))

less interesting for parsing free text

much more interesting for manipulating syntactic structures into ‘canonical’ form

cf. Pre-Scheme (Kelsey, 1997)

31

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

canonical meaning to executable form: LISP70 contd.

RULES OF COMPILE =
(COND (T :E)

-> <COMPILE :E> ,

(COND (:B :E) ...)
-> <COMPILE :B>

(DJUMPF :ELSE)
<COMPILE :E>
(JUMP :OUT)
(LABEL :ELSE)
<COMPILE (COND ...)>
(LABEL :OUT) ,

(LESSP :A :B)
-> <COMPILE :A>

<COMPILE :B>
(FETCH (FUNCTION LESSP)) ,

:V
-> (FETCH (VARIABLE :V)) ;

32

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

machine code the LISP70 way

(COND ((LESSP A B) C)
(T D))

=>

(FETCH (VARIABLE A)) (PUSH P A)
(FETCH (VARIABLE B)) (PUSH P B)
(FETCH (FUNCTION LESSP)) (POP P VAL)

(CAMG VAL 0 P)
(SKIPA VAL ZERO)
(MOVEI VAL 1)
(MOVEM VAL 0 P)

(DJUMPF E0001) (POP P VAL)
(JUMPE VAL E0001)

(FETCH (VARIABLE C)) (PUSH P C)
(JUMP E0002) (JUMPA VAL E0002)
(LABEL E0001) E0001
(FETCH (VARIABLE D)) (PUSH P D)
(LABEL E0002) E0002

stack machine; no types; simple (difficult to transcend local control, scope, etc.);
hard to optimise

33

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

lcc

a retargetable C compiler (Fraser and Hanson, 1991)

(Block ()
(JMPF L1

(LTI4 (INDIRI4 (ADDRLP A))
(INDIRI4 (ADDRLP B))))

(INDIRI4 (ADDRGP C))
(JMP L2)
(LABEL L1)
(INDIRI4 (ADDRGP D))
(LABEL L2))

VOID : (JMPF L (LTI4 REGI4 REGI4)) [cmpl reg(3.2), reg(3.3)
jlt lbl(2)]

REGI4 : (INDIR4 (ADDRGP)) [movl off(2.2), reg(0)]
REGI4 : (INDIR4 (ADDRLP)) [movl off(2.2)(%esp), reg(0)]
VOID : (JMP) [jmp lbl(2)]

movl _A, %eax
movl _B, %ecx
cmpl %eax, %ecx
jlt L1
movl 4(%esp), %eax
jmp L2

L1: movl 8(%esp), %eax
L2:

RTL vs. tree

34

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

instruction selection as grammar process: BURS

bottom-up rewrite system

reduce(tree, startSymbol) =
foreach rule in startSymbol.startSets

if match(tree, rule.pattern)
rule.action()
return startSymbol

return false

match(tree, pattern) =
if (pattern.isSymbol()) return reduce(tree, pattern)
if (tree.first != pattern.first) return false
foreach treeElement, patternElement in tree.tail, pattern.tail

unless match(treeElement, patternElement)
return false

return true

describe code generation (instruction selection) as tree rewriting

• single, unifed, simple, tiny, pervasive compilation ‘mechanism’

35

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

static implementation of a dynamic universe

independent axes
• compilation (static/offline vs. dynamic/incremental)
• execution (static/early-bound vs. dynamic/late-bound)

co
m

pi
la

tio
n

execution

sta
tic

dynamic

dy
na

m
ic

objComp.src

objComp.c

cc

bootstrap
compiler (C)

object
compiler

rm -rf objComp.c

anything.src

anything.exe

36

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

complexity of implementation

object compiler (in itself): 2200 LOC

transform structure (s-expressions) to canonical form: 620 LOC

code generation:

MI framework: 420 LOC
+ 176 LOC (PowerPC)
+ 118 LOC (Intel x86)

714

37

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

scorecard

√
extend the program’s code during execution

√
extend objects and definitions during execution

√
a program analyzing its own structure, code, types or data

√
executable data structures

√
offline and online compilation

√
VM, just-in-time, online & offline compilation

√
ability to directly modify machine code

√
generating new objects from a runtime definition

√
runtime alteration of object or type system

√
changing the inheritance or type tree

√
closures, continuations, introspection

√
new language constructs, optimisations, grammar

38

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

‘typical’ programming languages

interesting stuff designed elsewhere

hermetically sealed & inaccessible

to hackers in search of better paradigms
for creative expression

(or maybe just some way to get necessary
things done)

39

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

‘atypical’ programming language

syntax, semantics, pragmatics built from
the same fluid stuff

end-user systems are just syntactic, semantic, pragmatic ‘sugar’

if you don’t like the stuff or the sugar, all you need is a spoon...

40

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

less is more

It seems that perfection might be attained not when there is nothing left to
add but rather when there is nothing left to take away.

Antoine de Saint-Exupéry, Terre des Hommes, III : L’Avion, 1939

extreme late binding

• less mechanism⇒ fewer assumptions to early bind

• fewer assumptions⇒ easier to late-bind everything

• eliminate early-bound assumptions⇒ generality

much of the spirit was there in the early 1960’s; lost along the way

41

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

conclusion #1

objects provide form (that describes function)

• five ‘essential’ methods

• one semantic primitive (dynamic bind in the method cache)

• extrinsic implementation completely described by function model

• ≈ 2200 LOC for self-hosting object compiler (Smalltalk-like syntax)

• infinitely extensible/reusable ‘object framework’

• representation compatible with ‘foreign’ payloads

42

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

conclusion #2

functions describe behaviour (that implements objects)

• five (ish) ‘essential’ interpretations of structure

• one primitive form (conditional)

• extrinsic representation completely described by object model

• ≈ 1300 LOC for self-hosting dynamic function→ native code compiler

• infinitely extensible/reusable ‘behaviour framework’

• output is native code compatible with platform ABI

43

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

conclusion #3

take away:

• ‘dynamic’ can apply to everything (data, code, types, ...)

• ‘language’ can mean all of it (syntax, semantics, implementation, pragmatics, ...)

• it can be made very, very simple

• it can be made very, very general

• it can free you from a multitude of arbitrary, meanlingless pedantries

• it is a lot of fun

go home and innovate!

• built your own and share it with the world

• or use ours: releases every month or two

44

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

Form follows function — that has been misunderstood. Form and function should be
one, joined in a spiritual union.

Frank Lloyd Wright, 1908

It is the grand object of all theory to make these irreducible elements as simple and
as few in number as possible, without having to renounce the adequate
representation of any empirical content whatever.

Albert Einstein, Mein Weltbild, 1934

On the contrary, most of our systems are much more complicated than can be
considered healthy, and are too messy and chaotic to be used in comfort and
confidence. [...] You see, while we all know that unmastered complexity is at the root
of the misery, we do not know what degree of simplicity can be obtained, nor to what
extent the intrinsic complexity of the whole design has to show up in the interfaces.
We simply do not know yet the limits of disentanglement. We do not know yet
whether intrinsic intricacy can be distinguished from accidental intricacy.

Edsger W. Dijkstra, CACM 44(3), 2001

45

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

appendix A: putting it all together (parser)

Stmt ::=
"{" Stmt*:s "}" => ‘(begin ,@s)

| "var" Binding:first ("," Binding)*:rest ";" => ‘(begin ,first ,@rest)
| "if" "(" Expr:c ")" Stmt:t ("else" Stmt |

Empty => ’0):f => ‘(if (js-bool ,c) ,t ,f)
| "while" "(" Expr:c ")" Stmt:s => ‘(while (js-bool ,c) ,s)
| "do" Stmt:stmt "while" "(" Expr:cond ")" ";" => ‘(while (begin ,stmt ,cond))
| "for" "(" ("var" Binding | Expr):init ";"

Expr:cond ";" Expr:upd ")" Stmt:s => ‘(begin ,init
(while ,cond
(begin ,s ,upd)))

| "break" ";" => ’(break)
| "continue" ";" => ’(continue)
| "return" (Expr:e => ‘(#return ,e) |

Empty => ’(#return)):r ";" => r
| Expr:e ";" => e

(most of) JavaScript parser: 86 LOC

46

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

appendix A: putting it all together (semantics)

(define js-set
(lambda (lhs val)

(match lhs
((js-get (js-get :c :n) :p) ‘[(js-get ,c ,n) bind: ,p to: ,val])
((js-get (js-arr-get :a :i) :p) ‘[(js-arr-get ,a ,i) bind: ,p to: ,val])
((js-get :c :n) ‘[,c set: ,n to: ,val])
((js-arr-get :a :i) ‘(js-arr-set ,a ,i ,val))
(:otherwise (error "%o is not assignable" lhs)))))

JavaScript semantics: 100 LOC

47

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

appendix A: putting it all together (JavaScript)

• semantics: 100

• parser: 86

• library: 102 (minimal Object, String, Date, Number, etc.)

• graphics: 136

just over 400 LOC

with no serious attempt at optimisation, runs a little faster than FireFox

(and a lot faster than WebKit aka Safari)

48

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

appendix B: syntax demo typescript

$../main
Welcome to Jolt 0.1 [VPU 5.0 i386 generic]
.(char@ "abc" 0)
=> 97

.(char@ "abc" 1)
=> 98

.(char@ "abc" 2)
=> 99

.(char@ "abc" 3)
=> 0

49

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

appendix B (contd.)
$../main boot.k meta-repl.k -
Welcome to Jolt 0.1 [VPU 5.0 i386 generic]
; loading: ’boot.k
; loading: ’quasiquote.k
; loading: ’syntax.k
; loading: ’debug.k
; loading: ’../main.sym
; loading: ’object.k
; loading: ’match.k
; loading: ’sugar.k
; loading: ’CheckpointStream.k
; loading: ’meta.k
; loading: ’meta-coke.k
; loading: ’meta-meta.k
> with CokeTokenizer {
Coke2 ::= Coke:c ("[" Coke2:i "]" => ‘(char@ ,c ,i) |

Empty => c)
}
> (read-eval-print Coke2 StdIn 1 1 1)
> "abc"[0]
parsed: (#char@ ’abc’ 0)
=> 97

> "abc"[1]
parsed: (#char@ ’abc’ 1)
=> 98

> "abc"[2]
parsed: (#char@ ’abc’ 2)
=> 99

> "abc"[3]
parsed: (#char@ ’abc’ 3)
=> 0

50

c© 2007 by Ian Piumarta. Some Rights Reserved. For license terms: http://creativecommons.org/licenses/by-sa/2.5/

