
PEG-based transformer provides front-, middle-
and back-end stages in a simple compiler

Ian Piumarta
Viewpoints Research Institute

ian@vpri.org

Abstract
Traditional compiler generators target a single stage within the
compilation process. Each generator typically uses a dedicated spec-
ification language and the generated code often imposes restrictions
on the program representation accepted as input or generated as
output. This makes compilers larger and more complex than they
need to be. We present a simple compiler that unifies specification
and implementation of all its stages, using PEG-based transforma-
tions on a single, versatile representation. The resulting compiler
is small, easy to understand, and highly suited to implementing its
own implementation language.

1. Introduction
This paper describes an experiment in compiler construction that
uses a single parser to implement each of the three stages of
compilation: source parsing to create an AST, intermediate code
generation from the AST, and machine code generation from the
intermediate representation.1

Compilers are often broken into three (or more) stages: front-end
parsing, one or more middle-end analysis/optimisation steps, and
back-end code generation. This separation helps assure simple and
understandable transformations between adjacent stages, that are
easy to construct, debug and maintain.

The front-end parser converts program text into a structured form.
This parser is typically generated automatically from a grammar
using tools like Yacc [5] or ANTLR [8]. Analysis and optimisation
is often performed by tree rewriting—pattern matching to identify a
particular subtree and replacing it with a “better” subtree. The tree
rewriter can also be generated from a grammar that describes output
structure (trees) generated for particular statements of an input lan-
guage (patterns in a tree). Code generators can be implemented with
grammar-driven bottom-up tree rewriting, a well-known example
being the BURG [3] family of code generators. Each stage usually
uses a specialised grammar and parser/generator generator.

Our experiment applies a single parsing mechanism, driven
by a uniform grammar, to all three compilation stages. Section 2

1 This material is based upon work supported in part by the National
Science Foundation under Grant No. 0639876. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
author and do not necessarily reflect the views of the NSF.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
S3 2010 September 27, Tokyo, Japan
Copyright c� 2010 ACM . . . $10.00

Parser
Input

Stream
Output
Stream

semantic value

PEG
rules

generator

Figure 1. A parser has an input stream, a set of rules (generated
from an extended PEG) that recognise input structure and generate
output structures, an output stream to collect generated output, and
a current result (semantic value from the most recent expression)
that can be read and written within rules.

describes the architecture of the compilation chain. Section 3
illustrates the compilation chain using a complete example. Section 4
discusses the performance of the compiler. Section 5 presents related
work and Section 6 concludes.

2. Architecture
A single data structure and parsing mechanism is used through-
out the compilation chain, unifying the structure of the system.
For structure we chose (Lisp-like) lists as they are easy to gen-
erate/manipulate and can represent many data structures: tables,
streams, trees, and executable code (s-expressions)—i.e., programs
at all levels of abstraction as well as the algorithms that operate on
them. For parsing (pattern matching) we chose parsing expression
grammars (PEGs) [2] as they are predictable, easy to write, and
trivially converted into recursive-descent parsers. Simple extensions
let them recognise structure within, and then generate, arbitrary lists
of objects [1]. They can implement lexical as well as hierarchical
syntax within the same grammar, eliminating the need for a separate
tokeniser before syntax analysis proper.

Each stage in the compilation chain is a parser executing a set
of PEG rules. Parsers have an input stream and an output stream
(Figure 1). The input stream is read, patterns of objects within
it recognised according to the parser’s matching expressions, and
output expressions executed to write objects on the output stream.

Each PEG rule is a function operating on a parser and a stream.
The function returns true or false, indicating whether it recognised
the input at the head of the stream. If matched, that input is (usually)
consumed. If not, the stream position remains unchanged after the
rule fails. Each parsing expression has a semantic value, which is
stored as the parser’s “current result.” Expressions are provided for
storing the current result in rule-local variables, whose scope is the
current activation of the rule.

Objects are either atoms or lists. Atoms include integers (charac-
ters in text), strings (treated as a single object) and symbols (interned
strings). Lists represent sequences of objects and tree-like structures.

1

Output
Streamfile

terminal

string

text
->

prefix s-expression tree

prefix tree
->

postfix abstract code

abstract code
->

386 assembly

assembler

Input
Stream

Figure 2. The front end converts a source program (list of characters) into an abstract syntax tree. The middle end converts the three into
a program (list of instructions and operands) for a stack-oriented abstract machine. The back end converts the abstract machine code into
concrete assembly language for the Intel 386. The same grammar and parser implementation is used in the specification and implementation of
each stage.

Streams can be shared, the output stream from one stage being
the input stream to the next. The first input stream in the chain
converts a sequence of characters (in a file) into a stream of character
objects for the front-end stage. The final output stream, following the
back-end stage, converts a list of character objects into a sequence
of characters (in a file) for assembly. Since streams (lists) contain
objects, and characters and lists are kinds of object, the recognition
and generation mechanisms work equally on textual input/output
and tree-based intermediate representations. The compiler is thus
a pipeline of stages, each transforming homogeneous data from a
higher to a lower level of abstraction according to a set of PEG rules.

3. The compilation chain by example
Our compilation chain converts a Lisp-like source text into machine
code for the Intel 386 processor (Figure 2). Every transformation
(and its associated PEG rule) involved in the compilation of the
small benchmark program, shown below, will be described.

(define nfibs

(lambda (n)

(if (< n 2)

1

(+ 1 (+ (nfibs (- n 1)) (nfibs (- n 2))))))))

(print (nfibs 32))

3.1 Front end: text to AST
This stage converts the text above into the corresponding tree
structure consisting of nested lists, symbols and integers. The two
“top-level” expressions appear as two consecutive list objects in the
output stream.

The s-expression input language is a direct textual encoding of
the corresponding AST, making the front-end trivial.2 We include
this stage to illustrate the parsing expressions that generate results
(semantic values). (More substantive front ends would produce
similar ASTs; one example is the block-structured language Forall,
described by Yamamiya and Ohshima [12]).

The start rule of the front-end parser is invoked to generate an
object each time the next stage underflows its input stream. Each
object is an entire “top-level” s-expression.3

start = sexpr

2 The printed representation of the AST is identical to the source text and is
omitted for brevity.
3 Table 2 in Appendix A explains the matching expressions of our PEG.

An sexpr is made from whitespace (ignored) followed by either
an atom (symbol or number) or list (zero or more s-expressions
surrounded by parentheses). The rule for whitespace is given the
name “ ” to be suggestive of a blank space.

sexpr = _ (atom | list)

atom = symbol | number

list = "(" sexpr* :l _ ")" -> :l

The parsing result from each of these rules is the object that
they recognised. For example, the Kleene star in the list rule
repeatedly invokes sexpr to read an expression from the input, until
sexpr fails. The individual results from each successful match are
assembled into a (possibly empty) list and stored in the parser’s
current result. The next expression :l saves that result in a local
variable l. The final expression ->:l restores the parser’s current
result from the local variable l. This is necessary because the
intervening match of whitespace and closing parenthesis would
destroy the desired result of the overall rule (i.e., the list object
generated implicitly by sexpr*).

Symbols are made from a letter followed by any number of
letters or digits. Letters (characters within identifiers) will be any
alphabetic or punctuation character. A number is made from one or
more digits. Digits are the usual 0 through 9.

letter = [-+!\$\%&*./:<=>?@A-Z\\^_a-z|~]

digit = [0-9]

symbol = (letter (letter | digit)*) $$

number = digit+ $#10

The first two rules above are regular expressions that succeed if the
next character on the input stream matches a character in the given
character class. The matched character is stored in the parser as
the current result. In symbol, the final expression $$ converts the
current result (a list of letter or digit characters) into a symbol object.
Similarly, $#10 converts the current result (a list of digit characters)
into an integer, base 10.

The last few rules deal with whitespace and comments. A blank
is a space, tab or newline character. Comments run from a semicolon
to the end of the line. Tokens are separated by the whitespace rule
“ ”, matching any number of blanks or comments.

_ = (blank | comment)*

blank = [\t\n\r]

comment = ";" (!eol .)*

eol = ("\n" "\r"*) | ("\r" "\n"*)

2

accumulator

memory

stack

A&L

fetch & decode

foo

bar

baz

read

eval

print

data

functions

abstract machine

Figure 3. Abstract code runs on a stack machine with an accumu-
lator (first operand and result for all operations, where relevant),
a stack (second operand, saved intermediate results, and function
arguments), and a store holding both variables (named) and code
(with numbered labels).

3.2 Middle end: AST to abstract machine
The two AST objects produced by the front end are transformed
into the following abstract machine program, represented as a list of
symbols and integers.

(label 3

enter

load-long 2 save load-arg 0 less branch-false 1

load-long 1 branch 2

label 1

load-long 2 save load-arg 0 sub save

load-var nfibs call 1 save

load-long 1 save load-arg 0 sub save

load-var nfibs call 1 add save

load-long 1 add

label 2

leave

main

long nfibs load-label 3 store-var nfibs

load-long 32 save load-var nfibs call 1 save

load-var print call 1

exit)

The abstract machine (Figure 3) has an accumulator, a stack, and
a memory containing named storage locations (global variables).
Numbered labels identify the locations of function entry points
and branch destinations. Literal values can be loaded into the
accumulator. Values can be moved between the accumulator and
the top of the stack, and moved between the accumulator and a
named memory location. Operators use the accumulator as their
first operand and take their other (if any) from the top of the stack.
Results are left in the accumulator. The operation of each instruction
is summarised in Table 1.

This form is convenient for the generation of a concrete machine
code. (It could also be efficiently interpreted or stored for just-in-
time, or similarly deferred, code generation.)

One s-expression at a time will be converted into abstract
machine form, so the start rule in the middle-end parser matches an
expression.

start = expr

The next three rules are for convenience: long and name match
(using auxiliary predicates defined outside the grammar), consume
and return an integer or symbol object; arity counts the number
items left in the current stream.

long = &‘long? .

name = &‘symbol? .

arity = .*:x ->‘(list-length x)

Two kinds of list occur within s-expressions: actual args to
function calls and formal params in function definitions. Each actual
argument is an expression whose runtime value must be saved on
the stack as soon as it is available. Inserting a save instruction after
each argument expression accomplishes this.4

args = expr:e args:a -> (::a ::e save)

| expr:e -> (::e save)

| -> ()

Each formal parameter is declared (via an auxiliary function
arg-name) to differentiate it from a global variable during the
compilation of the function body. The rule is written so that parame-
ters are declared from right to left and are optional.

params = (name:h params

| name:h) ->‘(arg-name h)

|

An expression can be any object or AST structure generated by
the front end. Integer literals are trivial and symbols name either a
global or local (function parameter) variable. They appear verbatim
in the tree and are converted into a corresponding load instruction.
(The auxiliary predicate is-arg?, defined outside the grammar,
differentiates between local and global names according to previous
arg-name declarations.)

expr = long:x -> (load-long :x)

| name:x &‘(is-arg? x):n -> (load-arg :n)

| name:x -> (load-var :x)

Three binary operators are used in the example program. Op-
erators are “applied” like functions and so appear inside a nested
structure. The corresponding rule must match the start of this nested
structure before checking for the operator. Operands are “evaluated”
right to left, and the runtime value of the second must be saved
on the stack before the first overwrites it. When both operands are
available the instruction corresponding to the operator is emitted
(popping the runtime stack).

| ’(’< expr:x expr:y) -> (::y save ::x less)

| ’(’+ expr:x expr:y) -> (::y save ::x add)

| ’(’- expr:x expr:y) -> (::y save ::x sub)

Three “special forms” are dealt with before function calls.
(define name value) creates a global variable by reserving

a memory location labelled name wide enough to store the value,
then generates the instructions to evaluate the initialiser and store
its value into the location.

| ’(’define name:n expr:e)

-> (long :n ::e store-var :n)

(lambda (args...) expr...) creates a function value—an
address that can be called at runtime to execute the exprs. The
sequence of instructions corresponding to the expressions in the
body of the function are generated, delimited by enter and leave

instructions (function prologue and epilogue, respectively). This
sequence is not placed in the program at the point it occurs but
rather saved for out-of-line compilation by the auxiliary function
save-lambda which returns a unique label identifying the first
instruction in the prologue. The address of this label is the runtime
value of the entire lambda expression and is compiled in-line as a
literal in place of the entire lambda expression.

4 The output “template” for each rule is a list object in which substitutions
can be made by the operators :, :: and ::: (see Table 3 in Appendix A).

3

instruction operation

label integer define the location of a numbered label
long symbol create a named memory location (global variable)
load-long integer place a literal integer in the accumulator
load-var symbol copy the value stored in the named memory location to the accumulator
load-label integer copy the address of a numbered label to the accumulator
load-arg integer copy the value stored in the numbered argument to the accumulator
save push the value in the accumulator onto the stack
add pop the top of the stack and add it to the accumulator
sub pop the top of the stack and subtract it from the accumulator
less pop the top of the stack and compare it with the accumulator; set the accumulator to 1 if it was less

than the stack item, zero otherwise
store-var copy the value in the accumulator into the named memory location
call integer call the address in the accumulator as a function with the given number of actual arguments
enter create a new function activation record in the stack
leave return from the most recent function activation
branch integer transfer control to a numbered label
branch-false integer transfer control to a numbered label if the accumulator is zero

Table 1. The abstract instructions needed to implement the example program.

| ’(’lambda ’(params) expr*:b)

-> (enter :::b leave):l

->‘(save-lambda l):n

-> (load-label :n)

(if condition consequent alternate) evaluates conse-

quent if the condition is true, alternate if not. Two labels are required,
for the branch from the condition to the alternate clause and from
the end of the consequent clause to the end of the entire expression.
The labels are generated as unique integers by the auxiliary function
new-label.

| ’(’if expr:t expr:x expr:y)

->‘(new-label):a

->‘(new-label):b

-> (::t branch-false :a

::x branch :b

label :a ::y

label :b)

Function calls are a sequence whose first expression evaluates to
a function address to be called, with the remaining expressions in
the structure being the actual arguments passed to it on the runtime
stack. The call instruction is told the number of actual arguments
so that it can clean up the stack after the called function returns.

| ’(expr:f &arity:n args:a)

-> (::a ::f call :n)

Any other object appearing in the abstract machine code indicates
an implementation error in the front end.

| .:x ->‘(error "unrecognised expression: " x)

3.3 Back end: abstract machine to i386 assembly language
The runtime execution model corresponds directly to the abstract
machine extended with an explicit stack pointer (identifying the
topmost item on the stack) and frame pointer (identifying the start
of the current function activation record in the stack). The runtime
model and physical register assignments are shown in Figure 4.

Function arguments are passed on the stack. Each function
activation saves the caller’s frame pointer and return address in
the stack, loads the frame pointer with the address of the first actual
argument (numbered 0) and loads the stack pointer with the address

stack

frame pointer

stack pointer

argument N

argument 1

argument 0

return address

caller’s frame pointer

physical machine

eax = accumulator

ebx = stack pointer

esi = frame pointer

Figure 4. The physical execution model follows closely that of the
abstract machine. Three physical registers are permanently assigned
to the stack and frame pointers, and to the accumulator. The stack
grows downward in an area of memory allocated explicitly during
program initialisation.

of the saved return address (which is now the topmost item on
the stack). The stack grows downward, towards lower memory
addresses.

The program expression (print (nfibs 32)) was trans-
former into an AST by the front end, and into the abstract machine
program

(load-long 32 save

load-var nfibs call 1 save

load-var print call 1)

by the middle end. The back end transforms that abstract program
into the following assembly language program.

movl $32, %eax ; load-long 32

subl $4, %ebx ; save

movl %eax, (%ebx)

movl _V_nfibs, %eax ; load-var nfibs

call *%eax ; call 1

addl $4, %ebx

subl $4, %ebx ; save

movl %eax, (%ebx)

movl _V_print, %eax ; load-var print

call *%eax ; call 1

addl $4, %ebx

4

The back end recognises a sequence of abstract machine instruc-
tions

start = insn*

and emits corresponding assembly language on its output stream as
a side effect of recognising each legal abstract instruction.

Program labels generated by the middle end are integers. Prefix-
ing them with L keeps the assembler happy.5

insn = ’label .:l ‘"L\#l:"

Space for global variables is allocated in the data segment. Each
global variable name is prefixed with V to reduce contention with
externally-defined symbols.

| ’long .:n ‘" .data"

‘"_V_\$n: .long 0"

‘" .text"

The load instructions copy their operand into the accumulator;
store copies the accumulator into a named memory location.

| ’load-long .:l ‘"movl $\#l, %eax"

| ’load-label .:n ‘"movl $L\#n, %eax"

| ’load-arg .:n ->‘(* 4 n):n

‘"movl (\#n)(%esi), %eax"

| ’load-var .:n ‘"movl _V_\$n, %eax"

| ’store-var .:n ‘"movl %eax, _V_\$n"

The save instruction pushes the accumulator onto the stack.

| ’save ‘"subl $4, %ebx"

‘"movl %eax, (%ebx)"

Arithmetic operators perform an operation between the top of
stack and the accumulator, popping the stack. Relational operators
generate an explicit Boolean value (zero or non-zero) in the accu-
mulator.

| ’add ‘"addl (%ebx), %eax"

‘"addl $4, %ebx"

| ’sub ‘"subl (%ebx), %eax"

‘"addl $4, %ebx"

| ’less ‘"cmpl (%ebx), %eax"

‘"setl %al"

‘"movzbl %al, %eax"

‘"addl $4, %ebx"

Branches transfer control to a numbered label. Conditional
branches first test the accumulator for false (zero).

| ’branch .:l ‘"jmp L\#l"

| ’branch-false .:l ‘"cmpl $0, %eax"

‘"je L\#l"

Functions are applied by calling the computed destination ad-
dress in the accumulator. Actual arguments are popped from the
stack after the function returns.

| ’call .:n ->‘(* 4 n):n

‘"call *%eax"

‘"addl $\#n, %ebx"

Function prologue retrieves the return address and pushes it onto
the stack along with the caller’s frame pointer. A new frame pointer
is set up for the callee.

5 The ‘ expression and its string substitution operators (\# and \$) are
explained in Table 3.

| ’enter ‘"popl %ecx"

‘"movl %ecx, -4(%ebx)"

‘"movl %esi, -8(%ebx)"

‘"movl %ebx, %esi"

‘"subl $8, %ebx"

Function epilogue undoes the prologue, popping the caller’s
frame pointer and return address from the stack.

| ’leave ‘"movl %esi, %ebx"

‘"movl -8(%ebx), %esi"

‘"pushl -4(%ebx)"

‘"ret"

The program begins execution at the main instruction, which
aligns the C stack pointer to a 16-byte boundary and allocates a
1024 byte runtime stack (using malloc) for the compiled program
to use. The stack and frame pointers are initialised to point to the
end of the allocated stack.

| ’main ‘" .globl \${_PREFIX}main"

‘"\${_PREFIX}main:"

‘" leal 4(%esp), %ecx"

‘" andl $-16, %esp"

‘" pushl -4(%ecx)"

‘" pushl %ebp"

‘" movl %esp, %ebp"

‘" pushl %ecx"

‘" subl $20, %esp"

‘" movl $1024, (%esp)"

‘" call \${_PREFIX}malloc"

‘" leal 1024(%eax), %esi"

‘" leal -8(%esi), %ebx"

(The variable PREFIX is defined to a string containing the prefix, if
any, prepended to external symbols in the C namespace on the target
platform. Note that each pushl implicitly subtracts 4 from the C
stack pointer %esp. Subtracting 20 from it re-aligns it to a 16-byte
boundary, as required by the C ABI.)

Program execution is terminated by the exit instruction, which
performs a return (back to the operating system) from the C stack
set up by main.

| ’exit ‘"addl $20, %esp"

‘"popl %ecx"

‘"popl %ebp"

‘"leal -4(%ecx), %esp"

‘"movl $0, %eax"

‘"ret"

The helper function print called by the example program is
hand-written for the purposes of this paper, and emitted at the end
of the program as part of the final exit instruction.

‘"print: popl -4(%ebx)"

‘" movl %esi, -8(%ebx)"

‘" movl $_S_fmti, (%esp)"

‘" movl (%ebx), %eax"

‘" movl %eax, 4(%esp)"

‘" call \${_PREFIX}printf"

‘" movl -8(%ebx), %esi"

‘" pushl -4(%ebx)"

‘" ret"

‘" .data"

‘"_V_print: .long print"

‘"_S_fmti: .asciz \"%d\\""

‘" .text"

5

Anything else appearing in the stream of abstract instructions
indicates an implementation error in the middle end.

| .:x ‘(error "unrecognised instruction: " x)

)

When presented with the output from the middle end, this stage
produces the following text on its output stream.

L3: popl %ecx

movl %ecx, -4(%ebx)

movl %esi, -8(%ebx)

movl %ebx, %esi

subl $8, %ebx

movl $2, %eax

subl $4, %ebx

movl %eax, (%ebx)

movl (0)(%esi), %eax

cmpl (%ebx), %eax

setl %al

movzbl %al, %eax

addl $4, %ebx

cmpl $0, %eax

je L1

movl $1, %eax

jmp L2

L1: movl $2, %eax

subl $4, %ebx

movl %eax, (%ebx)

movl (0)(%esi), %eax

subl (%ebx), %eax

addl $4, %ebx

subl $4, %ebx

movl %eax, (%ebx)

movl _V_nfibs, %eax

call *%eax

addl $4, %ebx

subl $4, %ebx

movl %eax, (%ebx)

movl $1, %eax

subl $4, %ebx

movl %eax, (%ebx)

movl (0)(%esi), %eax

subl (%ebx), %eax

addl $4, %ebx

subl $4, %ebx

movl %eax, (%ebx)

movl _V_nfibs, %eax

call *%eax

addl $4, %ebx

addl (%ebx), %eax

addl $4, %ebx

subl $4, %ebx

movl %eax, (%ebx)

movl $1, %eax

addl (%ebx), %eax

addl $4, %ebx

L2: movl %esi, %ebx

movl -8(%ebx), %esi

pushl -4(%ebx)

ret

.globl main

main: leal 4(%esp), %ecx

andl $-16, %esp

pushl -4(%ecx)

pushl %ebp

movl %esp, %ebp

pushl %ecx

subl $20, %esp

movl $1024, (%esp)

call malloc

leal 1024(%eax), %esi

leal -8(%esi), %ebx

.data

_V_nfibs: .long 0

.text

movl $L3, %eax

movl %eax, _V_nfibs

movl $32, %eax

subl $4, %ebx

movl %eax, (%ebx)

movl _V_nfibs, %eax

call *%eax

addl $4, %ebx

subl $4, %ebx

movl %eax, (%ebx)

movl _V_print, %eax

call *%eax

addl $4, %ebx

addl $20, %esp

popl %ecx

popl %ebp

leal -4(%ecx), %esp

movl $0, %eax

ret

4. Discussion
The generated code runs at 75% the speed of the same program
written in C and compiled with typical optimisation (gcc-4.3 -O2)
on Intel Core and Core2 processors. The executable code is 1.8
times larger than the C version.

Several peephole optimisations are possible between the middle-
and back-end. Their definitions are obvious (from inspection of the
generated abstract code for frequently-occurring sequences) and
their impact on performance easily measurable.

Removing the occurrences of

addl $4, %ebx

subl $4, %ebx

increases performance to 80% and reduces size to 1.55 times
optimised C. Making a special case of comparison with a literal
integer followed by a conditional branch (to give

movl 0(%esi), %eax

cmpl $2, %eax

jge L1

just before L1) increases performance to 96% and reduces size to
1.48 of C.

More complex instruction selection schemes are possible within
the framework described here, but are most effective when the output
from stage 2 remains in a structured (tree-like) form. BURG-style
bottom-up “tree covering” can be described easily with a PEG,
with ordered choice guiding alternate selections rather than “cost”
functions. Compilation performance can be good but at the cost
of transparency and complexity. Backtracking must be limited, by
memoising matches on shared substructure and by properly factoring
common prefixes within alternate expressions (either manually
by the compiler writer, or automatically by a more sophisticated
analysis and translation of PEG into executable parser). A full
discussion of the issues and approaches is beyond the scope of
this paper.

6

Simple static type systems could be accommodated by keeping a
type token with each expression in the structured form and then
matching legal combinations of type tokens for each operator
implemented by stage 2. The linear form of the program would
make the corresponding machine type explicit in each abstract
machine instruction, with a corresponding increase in the number
of such instructions and the stage 3 expressions needed to generate
native code for them. Support for extensible type systems (or those
that involve inference beyond trivial checking and propagation of
synthesised types from sub-expressions) involves behaviour that is
more dynamic than (and less naturally expressed as) PEG-based
matching and transformation, more closely resembling an evaluator.6

A more sophisticated runtime system could place additional
demands on the compiler. Whether these demands exceed the
capabilities of a transformational approach to compilation, and the
extent/location of complexity that they introduce, depends largely
on the design of the runtime system. Examples might include the
use of inline caches to optimise dynamic binding, the use of read
and/or write barriers for pointer manipulation, and the generation of
maps of pointer locations in the stack to support a precise garbage
collector. The first two are hardly more complicated to implement
than the arithmetic operators described above, and the last places
almost all additional complexity in auxiliary functions called by the
transformation rules rather than in the rules themselves.

Simplicity and clarity, rather than performance, are the primary
goal—to make the successive transformation of source to binary
understandable at every stage. Less than 100 lines of PEG code
and about 20 lines of auxiliary function code are needed to compile
the example program presented here. In the author’s opinion, any
competent CS student should be able to understand the compilation
chain in a matter of hours and add the two optimisations described
above with less than one day of work. We consider this an excellent
result to achieve 96% the speed of optimised C (for simple numerical
programs), which is sufficiently fast for many purposes.

Practical application of PEG-based compilation chains would
replace the front end parser with one recognising a different (prob-
ably non s-expression oriented) language generating ASTs similar
to those described here. Abstract instructions would be added as
required by the semantics of the source language, and their trans-
lations to low-level executable code added to the back end. For
execution on other architectures, the output expressions of the back
end can be made to generate instructions for a different processor
architecture or byte codes for a high-performance virtual machine.
Yamamiya and Ohshima [12] describe such specialised front and
back ends, in their implementation of the Forall language compiled
to ActionScript Byte Code running on the Adobe Virtual Machine 2.

The compilation chain is not particularly fast. Compiling the
example program 100 times gives a time of 3.37 seconds for 1100
lines of source (and one AST per source line in our example
program) transformed into 516 kilobytes of assembler source—or
about 326 source lines per second. The PEG implementation itself
is very simple (less than 150 lines of code) and could be sped
up significantly by applying optimisations such as those used in
Rats! [4]. The cost would be a significant increase in complexity in
the overall implementation.

A complete listing of the three stages (without annotation) is
given in Appendix B. An archive containing everything needed
to generate and run the compiler described is available from:
http://piumarta.com/S3-2010/.

6 Of particular interest is the smallest static type system that permits all of
the source language’s runtime support to be expressed within the source
language itself, creating a self-sustaining implementation. The design of
a “minimal” environment supporting compilation chains similar to those
described here, and the treatment of static types within it, may be the topic
of a future paper.

5. Related work
Parsing expression grammars (PEGs) [2] are a development of
regular expressions [10], adding predicates and named sub-rules,
and replacing alternation with ordered choice. Schorre describes
META [9] in which the basic operations of parsing expression
grammars are compiled into a recursive-descent parser. Baker [1]
extends META to parse arbitrary data structures. The technique we
use to convert PEGs into parsers is effectively that described by
Schorre and Baker. Another system for matching patterns of objects,
based on some of the same ideas, is OMeta [11].

Front end parser generators have traditionally been bottom-
up, table driven, and difficult to understand or debug; the classic
example is Yacc [5]. They usually require a separate lexical analyser
(tokeniser), Yacc often being paired with the regular-expression
based Lex [7]. Alternatives such as ANTLR [8] have appeared
recently that generate recursive-descent parsers for context-free
languages in the form of a highly-readable program, and which
combine lexical and syntax analysis in a single parser generated
from a single grammar. (PEGs offer similar benefits, as well as
natural mechanisms to handle context sensitivity.)

Grammar-based back end generators have traditionally also
been bottom-up. IBURG [3] is a well known example that uses
a cost-minimising tree-covering algorithm to rapidly find “optimal”
concrete instructions by rewriting patterns within a tree of low-level
abstract machine code from the leaves up. Our PEG-based approach
could do similar analyses if the tree-structured representation of
code is maintained until the back end. (Experiments by the author
suggest that the performance of PEG-based tree-covering instruction
selection can be very good, with a relatively small penalty due to
backtracking, at the cost of significantly more complex back end
grammars than those described here.)

6. Conclusion
Many compilers use a grammar-based parser, code generator, or
both. None appear to use a single grammar-based generator to create
parser, transformation/analysis on intermediate forms, and code
generator.7

By adopting a single representation for all levels of abstraction
and within all stages of compilation, we unify the structure of
the compiler and the transformations that are applied to program
representations at each stage. A single PEG-based recogniser was
extended to match structures within the representations, and to
generate new structures for subsequent stages of compilation. The
resulting compiler is small, having only one “compiler generator”
language throughout, and is easy to understand because of the
obvious correlations between the output templates at any given
stage and the input patterns matched by the next.

Small, simple, dynamically-typed, polymorphic languages are
good candidates for the compilation chain described above. They are
well suited for manipulating the kinds of atomic and list data needed
to implement a PEG-based compilation chain. In other words, they
can easily become self-describing and self-sustaining. (The work
described in this paper was part of an investigation into building
such languages to support the STEPS project [6].) Complications
arise, however, when trying to implement primitive behaviour in
such languages for two reasons. First, external calling conventions
(to library or system routines) almost always depend on the declared
type of each parameter which complicates code generation for
“foreign” functions. Second, suitable coercions (guided by the
declared parameter types) must be applied to outgoing arguments
and incoming results.

7 There may be some, but an hour online searching for “parser-based
compilation” and similar terms produced no useful results.

7

Just-in-time (or other in-memory) compilation can be facilitated
by extending the back end’s output expressions with syntax to
construct integer instructions from bit fields. Forward references
complicate the process, and either a two-pass or back-patching back
end, with appropriate label management, is needed.

References
[1] H. Baker. Pragmatic parsing in Common Lisp. ACM SIGPLAN Lisp

Pointers, 4(2):3–15, April/June 1991.
portal.acm.org/citation.cfm?id=121984

[2] B. Ford. Parsing Expression Grammars: A Recognition-Based Syntactic

Foundation. 31st ACM SIGPLAN Symposium on Principles of
Programming Languages (POPL), January 2004, pp. 111–122.
pdos.csail.mit.edu/~baford/packrat/popl04/peg-popl04.pdf

[3] C. W. Fraser, D. R. Hanson and T. A. Proebsting. Engineering a Simple,

Efficient Code Generator Generator. ACM Letters on Programming
Languages and Systems, 1(3):213–226, September 1992.
storage.webhop.net/documents/iburg.pdf

[4] R. Grimm. Better Extensibility through Modular Syntax ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), June 2006, pp. 38–51.
cs.nyu.edu/rgrimm/xtc/rats.html

[5] S. C. Johnson. Yacc: Yet Another Compiler Compiler. Unix Program-
mer’s Manual, Volume 2b, AT&T Bell Laboratories, 1979.
dinosaur.compilertools.net/yacc

[6] A. Kay, D. Ingalls, Y. Ohshima, I. Piumarta and A. Raab. Steps Toward

The Reinvention of Programming. NSF Project Proposal, granted on
August 31st 2006.
http://www.vpri.org/pdf/rn2006002_nsfprop.pdf

[7] M. E. Lesk. Lex—a lexical analyser generator. Computing Science
Technical Report 39, AT&T Bell Laboratories, Murray Hill, NJ, 1975.
dinosaur.compilertools.net/lex/lex.ps

[8] T. Parr. The Definitive Antlr Reference: Building Domain-Specific

Languages. Pragmatic Bookshelf, May 2007. ISBN 978-0978739256
www.antlr.org

[9] D. V. Schorre. META II: a syntax-oriented compiler writing language.
19th National Conference of the ACM, August 1964.
portal.acm.org/citation.cfm?id=808896

[10] K. Thompson. Regular expression search algorithm. Communications
of the ACM, 11(6):419–422, 1968.
portal.acm.org/citation.cfm?id=363347.363387

[11] A. Warth and I. Piumarta. OMeta: an Object-Oriented Language for

Pattern Matching. Techincal Report TR–2007–003, Viewpoints Research
Institute, Glendale, CA, 2007.
www.vpri.org/pdf/tr2007003_ometa.pdf

[12] T. Yamamiya and Y. Ohshima. Tamacola — A Meta Language Kit for

the Web. 2nd ACM SIGPLAN Workshop on Self-Sustaining Systems (S3
2010), August 2010.
tinlizzie.org/~takashi/tamacola.pdf

A. Parsing expression syntax
Table 2 summarises the syntax of the extended parsing expression
grammars used in the compiler. Each rule has the form “name = e”
where e is a parsing expression. An expression has two results,
success (whether the input was matched) and a semantic value. A
rule fails (does not succeed) when the first expression in it fails; if
all expressions succeed then the rule succeeds. Every expression
yields a value; if a rule succeeds then its value is that of the last
expression “evaluated” within it. If an expression fails, its value is
undefined.

Output expressions construct a new result value for the rule.
They are summarised in Table 3. Unstructured output (a sequence of
integers) can be constructed from an output string expression. When
not preceded by -> the contents of the output string is written to the

#include <stdio.h>

long nfibs(long n)

{

return (n < 2)

? 1

: 1 + nfibs(n - 1) + nfibs(n - 2);

}

int main(int argc, char **argv)

{

printf("%ld\n", nfibs(32));

return 0;

}

Figure 5. C version of the example program, used for benchmark-
ing.

parser’s output stream as a sequence of characters, possibly with
substitutions from the contents of rule-local variables. The braces
around variable names can be omitted if no ambiguity arises.

The colon operators (:, :: and :::) “flatten” nested list struc-
tures. An example might be useful. Consider

a = ((a b) (c d))

b = ((e f))

then
(:a :b) = (((a b) (c d)) ((e f)))

(::a ::b) = ((a b) (c d) (e f))

(:::a :::b) = (a b c d e f)

Output expression syntax is designed to keep declaration of intent
in the same place as its use. While it might be a matter of personal
preference, the author finds a few additional output operators in the
PEG grammar preferable to the many auxiliary constructor functions
that would have to be defined far from their single points of use.

B. Code listings
Figure 5 contains the equivalent C version of the example program,
used for benchmarking. Figures 6, 7 and 8 contain complete listings
for the PEG grammars that generate the front-, middle- and back-
ends, respectively.

8

expression matches semantic value (result of expression)

primitive values
nothing (always succeeds) undefined

. any object (fails at the end of the stream) the object matched
[A-Za-z] any letter (integer) the letter matched
"abc" a sequence of letters (integers) the sequence matched
(e) the expression e the value of e
’ symbol a literal symbol object the object matched
’ (e) a structure whose contents match e e

‘ "output string " always a sequence containing the generated output

prefix operators
& e e, without discarding the related input e

! e not e, without discarding the related input undefined
-> e interpret e as an output expression (see Table 3) the value of e (see Table 3)
&‘predicate the current input object, iff host langauge predicate is true, the input object matched

without discarding the related input

postfix operators
e ? zero or one occurrences of e a sequence of the value of any e matched
e * zero or more occurrences of e a sequence of the values of each e matched
e + one or more occurrences of e a sequence of the values of each e matched
e $$ the symbol interned from the value of e
e $#base the value of e converted to a number in the given base

binary operators
e1 e2 e1 and then e2 e2

e1 | e2 e1 otherwise e2 the first e matched
e1 : name e1 e1 after storing it in the named variable

Table 2. Parsing expressions for recognising patterns in the data structures on the input stream.

expression value written to output stream

output expressions following a ->

symbol the indicated literal symbol object
(expression...) a sequence (structure) containing zero or more output expressions
:name the object stored in the named variable
::name the objects in the sequence stored in the named variable, spliced in-line into the enclosing output sequence
:::name the objects in the sequences in the sequence stored in the named variable,

spliced in-line into the enclosing output sequence
‘(host-expression) the result of evaluating the host-expression (in the STEPS system this is a “kernel” s-expression)

character sequence (string) output expressions
‘"characters... " a string containing each of the individual characters with substitutions as follows

output character substitutions
\n \r \t a newline, tab or carriage-return character (respectively)
\" a double quote character
\\ a backslash character
\${name } the characters formed by converting the object stored in the named variable to a string
\#{name } the characters formed by converting the object stored in the named variable to an integer
character any other character is copied verbatim to the output

Table 3. Expressions for generating new data structures on the output stream. (Output expressions always “succeed.”)

9

start = sexpr

sexpr = _ (atom | list)

atom = symbol | number

list = "(" sexpr* :l _ ")" -> :l

symbol = (letter (letter | digit)*) $$

number = digit+ $#10

letter = [-+!\$\%&*./:<=>?@A-Z\\^_a-z|~]

digit = [0-9]

_ = (blank | comment)*

blank = [\t\n\r]

comment = ";" (!eol .)*

eol = ("\n" "\r"*) | ("\r" "\n"*)

Figure 6. Grammar describing the transformation of text (a sequence of character objects) into an AST. Note that the output list structures
are generated implicitly as a result of the Kleene star operator.

long = &‘long? .

name = &‘symbol? .

arity = .*:x ->‘(list-length x)

args = expr:e args:a -> (::a ::e save)

| expr:e -> (::e save)

| -> ()

params = (name:h params:t | name:h) ->‘(arg-name h)

|

expr = long:x -> (load-long :x)

| name:x &‘(is-arg? x):n -> (load-arg :n)

| name:x -> (load-var :x)

| ’(’< expr:x expr:y) -> (::y save ::x less)

| ’(’+ expr:x expr:y) -> (::y save ::x add)

| ’(’- expr:x expr:y) -> (::y save ::x sub)

| ’(’define name:n expr:e) -> (long :n ::e store-var :n)

| ’(’lambda ’(params) expr*:b) -> (enter :::b leave):l

->‘(save-lambda l):n

-> (load-label :n)

| ’(’if expr:t expr:x expr:y) ->‘(new-label):a ->‘(new-label):b

-> (::t branch-false :a

::x branch :b

label :a ::y

label :b)

| ’(expr:f &arity:n args:a) -> (::a ::f call :n)

| .:x ->‘(error "unrecognised expression: " x)

start = expr

Figure 7. Grammar describing the transformation of ASTs into stack-oriented abstract machine instructions.

10

start = insn*

insn = ’label .:l ‘"L\#l:"

| ’long .:n ‘" .data"

‘"_V_\$n: .long 0"

‘" .text"

| ’load-long .:l ‘" movl $\#l, %eax"

| ’load-label .:n ‘" movl $L\#n, %eax"

| ’load-arg .:n ->‘(* 4 n):n ‘" movl (\#n)(%esi), %eax"

| ’load-var .:n ‘" movl _V_\$n, %eax"

| ’store-var .:n ‘" movl %eax, _V_\$n"

| ’save ‘" subl $4, %ebx"

‘" movl %eax, (%ebx)"

| ’add ‘" addl (%ebx), %eax"

‘" addl $4, %ebx"

| ’sub ‘" subl (%ebx), %eax"

‘" addl $4, %ebx"

| ’less ‘" cmpl (%ebx), %eax"

‘" setl %al"

‘" movzbl %al, %eax"

‘" addl $4, %ebx"

| ’branch .:l ‘" jmp L\#l"

| ’branch-false .:l ‘" cmpl $0, %eax"

‘" je L\#l"

| ’call .:n ->‘(* 4 n):n ‘" call *%eax"

‘" addl $\#n, %ebx"

| ’enter ‘" popl %ecx"

‘" movl %ecx, -4(%ebx)"

‘" movl %esi, -8(%ebx)"

‘" movl %ebx, %esi"

‘" subl $8, %ebx"

| ’leave ‘" movl %esi, %ebx"

‘" movl -8(%ebx), %esi"

‘" pushl -4(%ebx)"

‘" ret"

| ’main ‘" .globl \${_PREFIX}main"

‘"\${_PREFIX}main:"

‘" leal 4(%esp), %ecx"

‘" andl $-16, %esp"

‘" pushl -4(%ecx)"

‘" pushl %ebp"

‘" movl %esp, %ebp"

‘" pushl %ecx"

‘" subl $20, %esp"

‘" movl $1024, (%esp)"

‘" call \${_PREFIX}malloc"

‘" leal 1024(%eax), %esi"

‘" leal -8(%esi), %ebx"

| ’exit ‘" addl $20, %esp"

‘" popl %ecx"

‘" popl %ebp"

‘" leal -4(%ecx), %esp"

‘" movl $0, %eax"

‘" ret"

| .:x ‘(error "unrecognised instruction: " x)

Figure 8. Grammar describing the transformation of stack-oriented abstract code into concrete assembly language for the Intel 386.

11

